3.300 \(\int \text {sech}^4(c+d x) (a+b \sinh ^2(c+d x))^2 \, dx\)

Optimal. Leaf size=47 \[ \frac {\left (a^2-b^2\right ) \tanh (c+d x)}{d}-\frac {(a-b)^2 \tanh ^3(c+d x)}{3 d}+b^2 x \]

[Out]

b^2*x+(a^2-b^2)*tanh(d*x+c)/d-1/3*(a-b)^2*tanh(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3191, 390, 206} \[ \frac {\left (a^2-b^2\right ) \tanh (c+d x)}{d}-\frac {(a-b)^2 \tanh ^3(c+d x)}{3 d}+b^2 x \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^4*(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

b^2*x + ((a^2 - b^2)*Tanh[c + d*x])/d - ((a - b)^2*Tanh[c + d*x]^3)/(3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 390

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^n)
^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILt
Q[q, 0] && GeQ[p, -q]

Rule 3191

Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x, T
an[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]

Rubi steps

\begin {align*} \int \text {sech}^4(c+d x) \left (a+b \sinh ^2(c+d x)\right )^2 \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (a-(a-b) x^2\right )^2}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \left (a^2-b^2-(a-b)^2 x^2+\frac {b^2}{1-x^2}\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac {\left (a^2-b^2\right ) \tanh (c+d x)}{d}-\frac {(a-b)^2 \tanh ^3(c+d x)}{3 d}+\frac {b^2 \operatorname {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=b^2 x+\frac {\left (a^2-b^2\right ) \tanh (c+d x)}{d}-\frac {(a-b)^2 \tanh ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.35, size = 57, normalized size = 1.21 \[ \frac {(a-b) \tanh (c+d x) \text {sech}^2(c+d x) ((a+2 b) \cosh (2 (c+d x))+2 a+b)+3 b^2 (c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^4*(a + b*Sinh[c + d*x]^2)^2,x]

[Out]

(3*b^2*(c + d*x) + (a - b)*(2*a + b + (a + 2*b)*Cosh[2*(c + d*x)])*Sech[c + d*x]^2*Tanh[c + d*x])/(3*d)

________________________________________________________________________________________

fricas [B]  time = 1.74, size = 200, normalized size = 4.26 \[ \frac {{\left (3 \, b^{2} d x - 2 \, a^{2} - 2 \, a b + 4 \, b^{2}\right )} \cosh \left (d x + c\right )^{3} + 3 \, {\left (3 \, b^{2} d x - 2 \, a^{2} - 2 \, a b + 4 \, b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + 2 \, {\left (a^{2} + a b - 2 \, b^{2}\right )} \sinh \left (d x + c\right )^{3} + 3 \, {\left (3 \, b^{2} d x - 2 \, a^{2} - 2 \, a b + 4 \, b^{2}\right )} \cosh \left (d x + c\right ) + 6 \, {\left ({\left (a^{2} + a b - 2 \, b^{2}\right )} \cosh \left (d x + c\right )^{2} + a^{2} - a b\right )} \sinh \left (d x + c\right )}{3 \, {\left (d \cosh \left (d x + c\right )^{3} + 3 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + 3 \, d \cosh \left (d x + c\right )\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4*(a+b*sinh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

1/3*((3*b^2*d*x - 2*a^2 - 2*a*b + 4*b^2)*cosh(d*x + c)^3 + 3*(3*b^2*d*x - 2*a^2 - 2*a*b + 4*b^2)*cosh(d*x + c)
*sinh(d*x + c)^2 + 2*(a^2 + a*b - 2*b^2)*sinh(d*x + c)^3 + 3*(3*b^2*d*x - 2*a^2 - 2*a*b + 4*b^2)*cosh(d*x + c)
 + 6*((a^2 + a*b - 2*b^2)*cosh(d*x + c)^2 + a^2 - a*b)*sinh(d*x + c))/(d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c)*s
inh(d*x + c)^2 + 3*d*cosh(d*x + c))

________________________________________________________________________________________

giac [B]  time = 0.19, size = 98, normalized size = 2.09 \[ \frac {3 \, {\left (d x + c\right )} b^{2} - \frac {4 \, {\left (3 \, a b e^{\left (4 \, d x + 4 \, c\right )} - 3 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 3 \, a^{2} e^{\left (2 \, d x + 2 \, c\right )} - 3 \, b^{2} e^{\left (2 \, d x + 2 \, c\right )} + a^{2} + a b - 2 \, b^{2}\right )}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{3}}}{3 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4*(a+b*sinh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/3*(3*(d*x + c)*b^2 - 4*(3*a*b*e^(4*d*x + 4*c) - 3*b^2*e^(4*d*x + 4*c) + 3*a^2*e^(2*d*x + 2*c) - 3*b^2*e^(2*d
*x + 2*c) + a^2 + a*b - 2*b^2)/(e^(2*d*x + 2*c) + 1)^3)/d

________________________________________________________________________________________

maple [B]  time = 0.11, size = 96, normalized size = 2.04 \[ \frac {a^{2} \left (\frac {2}{3}+\frac {\mathrm {sech}\left (d x +c \right )^{2}}{3}\right ) \tanh \left (d x +c \right )+2 a b \left (-\frac {\sinh \left (d x +c \right )}{2 \cosh \left (d x +c \right )^{3}}+\frac {\left (\frac {2}{3}+\frac {\mathrm {sech}\left (d x +c \right )^{2}}{3}\right ) \tanh \left (d x +c \right )}{2}\right )+b^{2} \left (d x +c -\tanh \left (d x +c \right )-\frac {\left (\tanh ^{3}\left (d x +c \right )\right )}{3}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^4*(a+b*sinh(d*x+c)^2)^2,x)

[Out]

1/d*(a^2*(2/3+1/3*sech(d*x+c)^2)*tanh(d*x+c)+2*a*b*(-1/2*sinh(d*x+c)/cosh(d*x+c)^3+1/2*(2/3+1/3*sech(d*x+c)^2)
*tanh(d*x+c))+b^2*(d*x+c-tanh(d*x+c)-1/3*tanh(d*x+c)^3))

________________________________________________________________________________________

maxima [B]  time = 0.41, size = 267, normalized size = 5.68 \[ \frac {1}{3} \, b^{2} {\left (3 \, x + \frac {3 \, c}{d} - \frac {4 \, {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + 2\right )}}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}}\right )} + \frac {4}{3} \, a^{2} {\left (\frac {3 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}} + \frac {1}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}}\right )} + \frac {4}{3} \, a b {\left (\frac {3 \, e^{\left (-4 \, d x - 4 \, c\right )}}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}} + \frac {1}{d {\left (3 \, e^{\left (-2 \, d x - 2 \, c\right )} + 3 \, e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )} + 1\right )}}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4*(a+b*sinh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

1/3*b^2*(3*x + 3*c/d - 4*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) + 2)/(d*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x -
4*c) + e^(-6*d*x - 6*c) + 1))) + 4/3*a^2*(3*e^(-2*d*x - 2*c)/(d*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) + e^(
-6*d*x - 6*c) + 1)) + 1/(d*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) + 1))) + 4/3*a*b*(3*e^(
-4*d*x - 4*c)/(d*(3*e^(-2*d*x - 2*c) + 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) + 1)) + 1/(d*(3*e^(-2*d*x - 2*c)
+ 3*e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c) + 1)))

________________________________________________________________________________________

mupad [B]  time = 0.84, size = 194, normalized size = 4.13 \[ b^2\,x-\frac {\frac {4\,\left (a\,b-b^2\right )}{3\,d}-\frac {8\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a\,b-a^2\right )}{3\,d}+\frac {4\,{\mathrm {e}}^{4\,c+4\,d\,x}\,\left (a\,b-b^2\right )}{3\,d}}{3\,{\mathrm {e}}^{2\,c+2\,d\,x}+3\,{\mathrm {e}}^{4\,c+4\,d\,x}+{\mathrm {e}}^{6\,c+6\,d\,x}+1}+\frac {\frac {4\,\left (a\,b-a^2\right )}{3\,d}-\frac {4\,{\mathrm {e}}^{2\,c+2\,d\,x}\,\left (a\,b-b^2\right )}{3\,d}}{2\,{\mathrm {e}}^{2\,c+2\,d\,x}+{\mathrm {e}}^{4\,c+4\,d\,x}+1}-\frac {4\,\left (a\,b-b^2\right )}{3\,d\,\left ({\mathrm {e}}^{2\,c+2\,d\,x}+1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sinh(c + d*x)^2)^2/cosh(c + d*x)^4,x)

[Out]

b^2*x - ((4*(a*b - b^2))/(3*d) - (8*exp(2*c + 2*d*x)*(a*b - a^2))/(3*d) + (4*exp(4*c + 4*d*x)*(a*b - b^2))/(3*
d))/(3*exp(2*c + 2*d*x) + 3*exp(4*c + 4*d*x) + exp(6*c + 6*d*x) + 1) + ((4*(a*b - a^2))/(3*d) - (4*exp(2*c + 2
*d*x)*(a*b - b^2))/(3*d))/(2*exp(2*c + 2*d*x) + exp(4*c + 4*d*x) + 1) - (4*(a*b - b^2))/(3*d*(exp(2*c + 2*d*x)
 + 1))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**4*(a+b*sinh(d*x+c)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________